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It is well-known that vortex structures of laser beam can be created by different optical masks and holograms. These 
vortices are solutions of the 2D scalar Leontovich equations and admit amplitude and phase singularities. 
The main idea of present work is to investigate the formation of vortex structures for optical pulses, evolving in dispersive 
Kerr-type nonlinear medium with spatial dependence of the refractive index. The propagation of such type of laser pulses is 
governed by nonlinear vector system of amplitude equations. We found new class of analytical solutions with vortex 
structures for concave gradient fibers. Their stability is a result of the balance between diffraction and nonlinearity, as well 
as the balance between nonlinearity and angular distribution. 
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1. Introduction 
 

In the last few decades, there was a considerable 

progress in the investigation of the nonlinear evolution of 

short laser pulses in different optical fibers. This is a result 

of the rapid development of the scientific knowledge and 

new technologies in the field of nonlinear optics with a 

huge number of applications in high intensity laser 

systems in nuclear physics and medicine for better 

diagnostic and therapeutic methods with high resolution.  

It is important to mention that laser beams in linear 

regime of propagation admit different types of phase 

changes that lead to singularity. Such types of light beams 

are called singular. This uncertainty is a result of the 

phase jump and determines a zero-intensity region at a 

specific location in the beam. Thus, vortex structures are 

created.  Optical vortices are phases of singular structures 

providing a wide range of applications in optical 

cryptography, quantum computers for encoding and 

recording of information, making optical tweezers, etc. As 

we already pointed out, the condition for obtaining such 

kind of structures is the right balance between diffraction 

and nonlinearity. It is well known that different types of 

vortex structures of laser radiation can be created by 

optical holograms and various optical masks [1-6]. Optical 

vortices appear in the plane perpendicular to the direction 

of propagation of the laser beam. The existence of vortex 

structures, obtained by monochromatic wave as a solution 

of the two-dimensional paraxial scalar equation of 

Leontovich was first presented by authors in [7]. The 

solutions admit amplitude and phase singularities. On the 

other hand, it is well-known that for these solutions the 

integral of energy is infinite. An elegant way to eliminate 

amplitude singularities is by using Gaussian pulses [8].  

Important results in generating of optical vortices in 

fibers are presented in [9-12]. With regard to the 

distribution of the refractive index n of the waveguides in 

which these vortex structures are obtained, we can distinct 

gradient and stepped optical fibers. We are interested in 

the evolution of optical pulses in Kerr-type nonlinear 

dispersive media with spatial dependence of the refractive 

index. With 𝑈⃗⃗  is presented the vector amplitude function, 

describing the pulse envelope. In this case, the refractive 

index of the media is of the kind [13-15]:  
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where n0() and n2 are respectively the linear and 

nonlinear refractive index, characterizing the dispersion 

and nonlinearity of the medium. The second term 𝑆𝑔(𝑥
2 +

𝑦2) in (1) gives the spatial dependence of the refractive 

index and Sg is a constant.  

Depending on the sign of the constant Sg, fibers are 

divided in two types [16]: 

1. Sg < 0 - optical waveguides that have this type of 

spatial dependence of the refractive index are known as 

gradient fibers. The linear refractive index is maximal on 

the fiber axis and decreases smoothly to its periphery (Fig. 

1 (a)). 

2. Sg > 0 - optical waveguides that have this type of 

spatial dependence of the refractive index are also gradient 

but concave. Their linear refractive index has a smaller 

value along the fiber axis and it rises smoothly to its 

periphery (Fig. 1 (b)). 
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Fig. 1. Distribution of the refractive index n of gradient 

optical fibers; (a) gradient fibers; (b) concave gradient 

fibers 

 

In this paper we are looking for vortex solutions of the 

nonlinear system of vector spatio-temporal amplitude 

equations of laser pulses, propagating in gradient optical 

fibers with spatial dependence of the refractive index.  

 

 
2. Basic equations 

 
The normalized nonlinear amplitude equation, 

describing the propagation of a linear polarized electrical 

field 𝑈⃗⃗ = (𝑈𝑥 , 𝑈𝑦 , 0) is of the kind [16]: 

𝑖
𝜕𝑈⃗⃗ 

𝜕𝑧
+

1

2
(𝛥⏊𝑈⃗⃗ − 𝑆𝑑

𝜕2𝑈⃗⃗ 

𝜕𝑡2) + 𝑆𝑔(𝑥
2 + 𝑦2)𝑈⃗⃗ + 𝛾|𝑈⃗⃗ |2𝑈⃗⃗ = 0,     

(2) 

 

where  𝛥⏊ =
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2.  

 

Here, constant Sd characterizes the dispersion of the 

media. The parameter 𝛾 is nonlinearity of the medium and 

𝛥⏊is the transverse Laplace operator. This equation is a 

modified nonlinear Schrödinger equation, written in vector 

form in Cartesian coordinates. The additional third term 

describes the spatial dependence of the linear refractive 

index. An approximate solution of the equation above in 

scalar form for Sg < 0 is described in [16].   

We are looking for an exact analytical solution of 

equation (2) in the case of Sg > 0. This condition applies to 

optical fibers and photonic crystals with a concave profile 

of the refractive index (Fig. 1(b)). Such types of 

waveguides find applications in different nonlinear 

devices for controlling and manipulating light, as optical 

transistors used in optical computers, as lenses and mirrors 

in thin-film optics, in modern optical sensors and 

communication systems [17-22].  

We are looking for vortices solutions of the partial 

differential equation (2) for the vector amplitude function 

𝑈⃗⃗ (𝑥, 𝑦, 𝑧, 𝑡) = (𝑈𝑥(𝑥, 𝑦, 𝑧, 𝑡), 𝑈𝑦(𝑥, 𝑦, 𝑧, 𝑡),0). In order to 

find them, we need to form the following system of scalar 

equations for each of the components Ux and Uy of the 

vector amplitude function: 

 
𝜕𝑈𝑥

𝜕𝑧
+

1

2
(
𝜕2𝑈𝑥

𝜕𝑥2 +
𝜕2𝑈𝑥

𝜕𝑦2 ) − 𝑆𝑑
𝜕2𝑈𝑥

𝜕𝑡2 + 𝑆𝑔(𝑥
2 + 𝑦2)𝑈𝑥 + 𝛾|𝑈𝑥

2 + 𝑈𝑦
2|𝑈𝑥 = 0,                                        (3) 

 
𝜕𝑈𝑦

𝜕𝑧
+

1

2
(
𝜕2𝑈𝑦

𝜕𝑥2 +
𝜕2𝑈𝑦

𝜕𝑦2 ) − 𝑆𝑑
𝜕2𝑈𝑦

𝜕𝑡2 + 𝑆𝑔(𝑥
2 + 𝑦2)𝑈𝑦 + 𝛾|𝑈𝑥

2 + 𝑈𝑦
2|𝑈𝑦 = 0 ,                                     (4) 

 

where: 

𝑈𝑥 = 𝑈𝑥 (𝑥, 𝑦, 𝑧, 𝑡), 
𝑈𝑦 = 𝑈𝑦 (𝑥, 𝑦, 𝑧, 𝑡),                          (5) 

 

In order to find a solution of the system (3) and (4) we 

use the following mathematical algorithm: 

 We will work in cylindrical coordinates: 

  

cosrx  , 
sinry 

, 
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 After these transformations, the system of 

equations (3) and (4) takes the form: 

 

𝑖
𝜕𝑈𝑥

𝜕𝑧
+

1

2
(
1

𝑟

𝜕𝑈𝑥

𝜕𝑟
+

𝜕2𝑈𝑥

𝜕𝑟2 +
1

𝑟2

𝜕2𝑈𝑥

𝜕𝜃2 ) −
𝑆𝑑

2

𝜕2𝑈𝑥

𝜕𝑡2 + 𝑆𝑔𝑟
2𝑈𝑥 + 𝛾|𝑈𝑥

2 + 𝑈𝑦
2|𝑈𝑥 = 0,                           (7) 

 

𝑖
𝜕𝑈𝑦

𝜕𝑧
+

1

2
(
1

𝑟

𝜕𝑈𝑦

𝜕𝑟
+

𝜕2𝑈𝑦

𝜕𝑟2 +
1

𝑟2

𝜕2𝑈𝑦

𝜕𝜃2 ) −
𝑆𝑑

2

𝜕2𝑈𝑦

𝜕𝑡2 + 𝑆𝑔𝑟
2𝑈𝑦 + 𝛾|𝑈𝑥

2 + 𝑈𝑦
2|𝑈𝑦 = 0.              (8) 

 

 We make the substitution:      

          

𝑈𝑥 = 𝑒𝑖𝜓𝑥(𝑧,𝑡)𝑃𝑥 (𝑟, 𝑡),     (9) 

𝑈𝑦 = 𝑒𝑖𝜓𝑦(𝑧,𝑡)𝑃𝑦 (𝑟, 𝑡), 

where 𝑃𝑥 and 𝑃𝑦 are initial peak powers of the amplitude 

functions of the pulses and 𝜓𝑥 and 𝜓𝑦 are the phases of 

the components. 
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 Having in mind that Ux and Uy are components of 

the same pulse, we assume that the phase functions are the 

same: 

 𝜓𝑥 = 𝜓𝑦 = 𝛹(𝑧, 𝑡).                        (10) 

 

Then: 

𝑈𝑥 = 𝑃𝑥 (𝑟, 𝑡)𝑒
𝑖𝛹(𝑧,𝑡),

𝑈𝑦 = 𝑃𝑦 (𝑟, 𝑡)𝑒
𝑖𝛹(𝑧,𝑡).

              (11) 

 

Thus, after a couple of transformations the system of 

equations (7) and (8) takes the form: 

 

−
𝜕𝛹

𝜕𝑧
𝑃𝑥 𝑒

𝑖𝛹 +
1

2
(
1

𝑟

𝜕𝑃𝑥

𝜕𝑟
+

𝜕2𝑃𝑥

𝜕𝑟2
+

1

𝑟2

𝜕2𝑃𝑥

𝜕𝜃2
) 𝑒𝑖𝛹 −

𝑆𝑑

2
(𝑖

𝜕2𝛹

𝜕𝑡2
− (𝑖

𝜕𝛹

𝜕𝑡
)
2

)𝑃𝑥𝑒
𝑖𝛹 + 𝑆𝑔𝑟

2𝑃𝑥𝑒
𝑖𝛹

+           𝛾|𝑃𝑥
2(𝑟, 𝜃) + 𝑃𝑦

2(𝑟, 𝜃)|𝑃𝑥𝑒
𝑖𝛹 = 0, 

 (12) 

 

−
𝜕𝛹

𝜕𝑧
𝑃𝑦 𝑒

𝑖𝛹 +
1

2
(
1

𝑟

𝜕𝑃𝑦

𝜕𝑟
+

𝜕2𝑃𝑦

𝜕𝑟2
+

1

𝑟2

𝜕2𝑃𝑦

𝜕𝜃2
) 𝑒𝑖𝛹 −

𝑆𝑑

2
(𝑖

𝜕2𝛹

𝜕𝑡2
− (𝑖

𝜕𝛹

𝜕𝑡
)
2

)𝑃𝑦𝑒
𝑖𝛹 + 𝑆𝑔𝑟

2𝑃𝑦𝑒
𝑖𝛹

+         𝛾|𝑃𝑥
2(𝑟, 𝜃) + 𝑃𝑦

2(𝑟, 𝜃)|𝑃𝑦𝑒
𝑖𝛹 = 0.                

 (13) 

 

 We divide the two sides of the system above of 𝑃𝑥 𝑒
𝑖𝛹(𝑧,𝑡) and 𝑃𝑦 𝑒

𝑖𝛹(𝑧,𝑡). As a result the equations (12) and (13) 

take the form: 

 

⌈(
𝜕𝛹

𝜕𝑧
+ 𝑖

𝑆𝑑

2

𝜕2𝛹

𝜕𝑡2 − 𝑖
𝑆𝑑

2
(
𝜕𝛹

𝜕𝑡
)
2

)⌉ =
1

2
(
1

𝑟

𝜕𝑃𝑥

𝜕𝑟
+

𝜕2𝑃𝑥

𝜕𝑟2 +
1

𝑟2

𝜕2𝑃𝑥

𝜕𝜃2 )
1

𝑃𝑥
+𝑆𝑔𝑟

2 + 𝛾|𝑃𝑥
2(𝑟, 𝜃) + 𝑃𝑦

2(𝑟, 𝜃)|,              (14) 

 

⌈(
𝜕𝛹

𝜕𝑧
+ 𝑖

𝑆𝑑

2

𝜕2𝛹

𝜕𝑡2 − 𝑖
𝑆𝑑

2
(
𝜕𝛹

𝜕𝑡
)
2

)⌉ =
1

2
(
1

𝑟

𝜕𝑃𝑦

𝜕𝑟
+

𝜕2𝑃𝑦

𝜕𝑟2 +
1

𝑟2

𝜕2𝑃𝑦

𝜕𝜃2 )
1

𝑃𝑦
+𝑆𝑔𝑟

2 + 𝛾|𝑃𝑥
2(𝑟, 𝜃) + 𝑃𝑦

2(𝑟, 𝜃)|.           (15)  

 

 

 After that we divide the variables in the two 

equations. In the system above, the left terms of the 

equations are not functions of r and the right terms are not 

functions of z and t. Therefore, in order the equalities to be 

fulfilled, it is necessary that each of the sides of the 

equations to be equal to a constant. So the following 

systems of equations are obtained: 

  
𝜕𝛹

𝜕𝑧
+ 𝑖

𝑆𝑑

2

𝜕2𝛹

𝜕𝑡2 − 𝑖
𝑆𝑑

2
(
𝜕𝛹

𝜕𝑡
)
2

= 𝑎 = 𝑐𝑜𝑛𝑠𝑡,         (16) 

 
1

2
(
1

𝑟

𝜕𝑃𝑥

𝜕𝑟
+

𝜕2𝑃𝑥

𝜕𝑟2 +
1

𝑟2

𝜕2𝑃𝑥

𝜕𝜃2 )
1

𝑃𝑥
+𝑆𝑔𝑟

2 +

                 𝛾|𝑃𝑥
2(𝑟, 𝜃) + 𝑃𝑦

2(𝑟, 𝜃)| = 𝑎 = 𝑐𝑜𝑛𝑠𝑡,       

(17) 

 
𝜕𝛹

𝜕𝑧
+ 𝑖

𝑆𝑑

2

𝜕2𝛹

𝜕𝑡2 − 𝑖
𝑆𝑑

2
(
𝜕𝛹

𝜕𝑡
)
2

= 𝑑 = 𝑐𝑜𝑛𝑠𝑡,          (18) 

 
1

2
(
1

𝑟

𝜕𝑃𝑦

𝜕𝑟
+

𝜕2𝑃𝑦

𝜕𝑟2 +
1

𝑟2

𝜕2𝑃𝑦

𝜕𝜃2 )
1

𝑃𝑦
+𝑆𝑔𝑟

2 +

                  𝛾|𝑃𝑥
2(𝑟, 𝜃) + 𝑃𝑦

2(𝑟, 𝜃)| = 𝑑 = 𝑐𝑜𝑛𝑠𝑡.         (19) 

 

The equations (16) and (18) are referred to the same 

function, so a = d, i.e. the both equations coincide. 

 Let’s first take into account the equation (16). We 

make the following substitution for the phase function: 

 

𝛹 = 𝑏𝑡 + 𝑐𝑧,              (20) 

 

where    
𝜕𝛹

𝜕𝑧
= 𝑐,    

𝜕𝛹

𝜕𝑧
= 𝑏. 

 

After we substitute the expressions above in equation 

(16), we obtain: 

 

𝑐 −
𝑆𝑑

2
𝑏2 = 𝑎 .                              (21) 

 

The equality above presents the connection between 

the constants a, b and c. 

 Now, we will consider the equations (17) и (19). 

They are of the same type and are referred to the same 

unknown functions Px and Py. We will find their solutions 

by making the substitutions: 

 

𝑃𝑥 =
𝐴

𝑟
𝑒𝑖𝑔𝑟2

𝑇𝑥(𝜃),     𝑃𝑦 =
𝐴

𝑟
𝑒𝑖𝑔𝑟2

𝑇𝑦(𝜃),        (22) 

 

where  T𝑥 and T𝑦 are new unknown functions of the 

variables z, t and θ that characterize the initial amplitude 

functions. The angle θ is connected to the rotation of the 

vector of the electrical field and A and g are constants. 

As a result the following equations for the functions 

Tx  and Ty are obtained: 

 
1

2
(

1

𝑟3 − 4𝑔2𝑟) 𝑟 + 𝑆𝑔𝑟
2 +

1

2𝑟2

𝜕2𝑇𝑥

𝜕𝜃2

1

𝑇𝑥
+ 𝛾

𝐴2

𝑟2 |𝑇𝑥
2 + 𝑇𝑦

2| = 𝑎,              (23) 
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1

2
(

1

𝑟3 − 4𝑔2𝑟) 𝑟 + 𝑆𝑔𝑟
2 +

1

2𝑟2

𝜕2𝑇𝑦

𝜕𝜃2

1

𝑇𝑦
+ 𝛾

𝐴2

𝑟2 |𝑇𝑥
2 + 𝑇𝑦

2| = 𝑎                          (24) 

 

On the right side of the equations above, it is 

presented the sum of the squares of the functions Тx and 

Тy. That is why it is appropriate to wright down:  

 

𝑇𝑥 = 𝑐𝑜𝑠(𝑘𝜃),                      (25) 

 

𝑇𝑦 = 𝑠𝑖𝑛(𝑘𝜃).                          (26) 

 

where k is a constant.  

Thus, we replace (25) and (26) in the system of 

equations (23) and (24). After a couple of transformation 

the system is reduced to one equation:  

 
1

2𝑟2
(1 − 𝑘2 + 2𝛾𝐴2) + 𝑟2(𝑆𝑔 − 2𝑔2) = 𝑎.    (27) 

 

In the expression above the first term has a multiplier 

r-2, and the second one respectively r2. In order the 

equality to be satisfied it is necessary that:  

 

а = 0,                                  (28) 

 

(1 − 𝑘2 + 2𝛾𝐴2) = 0,                    (29) 

 

(𝑆𝑔 − 2𝑔2) = 0.                        (30)  

    

By using the nonlinear dispersion relation (29) we can 

define the constant А  

 

𝐴 = √
𝑘2−1

2𝛾
,                                 (31) 

 

and the connection between the parameters  

 

𝑔 = ±√
𝑆𝑔

2
  .                                (32)  

                                                                                 

Having in mind (21), (32) and 𝑎 = 0, we find a link 

between the constants c and b: 

 

𝑐 =
𝑆𝑔

2
𝑏2.                                (33) 

 

when b = 1   ⇒  𝑐 =
𝑆𝑔

2
. 

Thus, by using the substitutions above, we found 

exact analytical solutions of the nonlinear system of 

equations (3) and (4).  

 

𝑈𝑥 = √
𝑘2−1

2𝛾

1

𝑟
𝑒

𝑖√
𝑆𝑔

2
𝑟2

𝑐𝑜𝑠(𝑘𝜃)𝑒𝑖(𝑡+
𝑆𝑑
2

𝑧)
,        (34) 

 

𝑈𝑦 = √
𝑘2−1

2𝛾

1

𝑟
𝑒

𝑖√
𝑆𝑔

2
𝑟2

𝑠𝑖𝑛(𝑘𝜃)𝑒𝑖(𝑡+
𝑆𝑑
2

𝑧)
,        (35) 

 

where 𝑘 is the vortex number,  𝑘 ≠ 1 , 𝑘 = 2, 3, 4, 5 … 

The two expressions present the amplitude function of 

the components of the vector electrical field 𝑈⃗⃗ . The 

number 1 in the nonlinear dispersion relation (29) comes 

from the diffraction terms. The parameter 𝑘2 is obtained 

from the angular terms and the angular distribution. It is 

obvious that when k=0 there are no vortices and there are 

no solutions of the basic system of equations, because 𝐴2 

is positive. The vortex solutions (34) and (35) are 

solutions of the system of equations (3) and (4) only if 𝑟 ≠
0 and the nonlinear dispersion relation (29) is satisfied. 

This corresponds to the fact that the obtained vortices have 

discrete series of the amplitudes. Usually, in linear theory 

of optical vortices the peak amplitude constants have 

arbitrary values, because they do not present in the linear 

dispersion relation. In the nonlinear dispersion relations of 

these new solutions the amplitude constants are presented.  

 
 
3. Numerical calculations  

 
We have made a couple of simulations for the 

analytical solutions (34) and (35) of the system of 

equations (3) and (4) for different values of the vortex 

number k. They characterize the pulse envelope, 

propagating in nonlinear dispersive fiber with spatial 

dependence of the refractive index.  

In numerical experiments vortices are usually 

investigated by using masks in the center of vortex 

structure. That corresponds to adding an additional term 

(α<<1) in the denominator of the solutions. 

 First numerical simulations are made for k=2. In 

this case the exact analytical solutions (34) and (35) of the 

basic system of equations are of the kind: 

 

𝑈𝑥 = √
3

2

1

𝑟
𝑒

𝑖√
𝑆𝑔

2
𝑟2

𝑐𝑜𝑠(2𝜃)𝑒𝑖(𝑡+
𝑆𝑑
2

𝑧)
,              (36) 

 

𝑈𝑦 = √
3

2

1

𝑟
𝑒

𝑖√
𝑆𝑔

2
𝑟2

𝑠𝑖𝑛(2𝜃)𝑒𝑖(𝑡+
𝑆𝑑
2

𝑧)
.              (37) 

 

The solutions above can be written in the Cartesian 

coordinates: 

 

𝑈𝑥 = √
3

2
𝑒

𝑖√
𝑆𝑔

2
𝑟2 𝑥2−𝑦2

𝑟3 𝑒𝑖(𝑡+
𝑆𝑑
2

𝑧)
,                   (38) 

 

𝑈𝑦 = √
3

2
𝑒

𝑖√
𝑆𝑔

2
𝑟2 2𝑥𝑦

𝑟3 𝑒𝑖(𝑡+
𝑆𝑑
2

𝑧)
.                      (39) 

 

In Fig. 2 (a) and (b) there are presented the profiles of 

the components Ux and Uy of the amplitude function of the 

optical vortex. It is quite complicated but symmetrical 

distribution of the intensity of the pulse.  
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Fig. 2. Intensity profiles of the components (a) 𝑈𝑥 and 

(b) 𝑈𝑦 in the case of k=2 

 

In Fig. 3 it is presented the intensity profile of the 

vortex structure. It is observed a symmetrical distribution 

of the vortex energy in the pedestal. 

 

 
 

Fig. 3. Intensity profile of the optical vortex in the case of 

k=2 

 

On Fig. 4 it is shown the diagram of the vector 

amplitude function of the optical vortex in the case of k=2. 

It is observed a rotation of the vector of the electrical field 

in the center of the vortex. 

 

 
 

Fig. 4. Diagram of the vector amplitude function for k=2. 

Significant rotation of the vector of the electrical field in 

the center of the vortex is observed 

 

 For k=3 the solutions of the system of equations 

(3) and (4) are of the kind: 

 

𝑈𝑥 = √2
1

𝑟
𝑒

𝑖√
𝑆𝑔

2
𝑟2

𝑐𝑜𝑠(3𝜃)𝑒𝑖(𝑡+
𝑆𝑑
2

𝑧)
,              (40) 

 

𝑈𝑦 = √2
1

𝑟
𝑒

𝑖√
𝑆𝑔

2
𝑟2

𝑠𝑖𝑛(3𝜃)𝑒𝑖(𝑡+
𝑆𝑑
2

𝑧)
.              (41) 

 

These solutions, written in Cartesian coordinates are 

in the form: 

 

𝑈𝑥 = √2𝑒
𝑖√

𝑆𝑔

2
𝑟2 4𝑥3−3𝑥𝑟2

𝑟4 𝑒𝑖(𝑡+
𝑆𝑑
2

𝑧)
,                (42) 

 

𝑈𝑦 = √2𝑒
𝑖√

𝑆𝑔

2
𝑟2 3𝑦𝑟2−4𝑦3

𝑟4 𝑒𝑖(𝑡+
𝑆𝑑
2

𝑧)
.               (43) 

 

In Fig. 5 (a) and (b) there are presented the profiles of 

the components 𝑈𝑥 and 𝑈𝑦 of the amplitude function of 

the optical vortex for k=3. Here, the distribution of the 

intensity of the pulse is even more complicated but also 

symmetrical. 
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Fig. 5. Intensity profiles of the components (a) 𝑈𝑥 and 

(b) 𝑈𝑦 in the case of  k=3 

 

In Fig. 6 it is presented the profile of the intensity of 

the vortex structure in the case of k=3. It is observed the 

same pedestal as that on Fig. 3.  

 

 
 

 

Fig. 6. Intensity profile of the optical vortex  

in the case of k=3 

 

On Fig. 7 it is shown the diagram of the vector 

amplitude function of the optical vortex in the case of k=3. 

Here, it is also observed a significant rotation of the vector 

of the electrical field in the center of the vortex. 

 

 
 

Fig. 7. Diagram of the vector amplitude function for k=3. 

Significant rotation of the vector of the electrical field in 

the center of the vortex is observed 

 

4. Conclusions 
 

In the present work it was shown a mathematical 

algorithm for solving the nonlinear system of spatio-

temporal amplitude equations (3) and (4), describing the 

propagation of the components of laser pulses in isotropic 

nonlinear dispersive optical fiber with spatial dependence 

of the refractive index when Sg > 0. 

A new class of exact analytical solutions (34) and (35) 

in the form of optical vortex structures are found. The 

nonlinear dispersion ratios obtained by these vortex 

solutions shows that their stability is due to the balance 

between diffraction and nonlinearity, as well as the 

balance between nonlinearity and angular distribution of 

the field. A number of numerical simulations of the 

solutions of the system of equations (3) and (4) are made.  
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